🔥OpenThaiGPT 1.0.0 <8 Apr 2024>
Last updated
Was this helpful?
Last updated
Was this helpful?
🇹🇭 OpenThaiGPT 7b, 13b, 70b Version 1.0.0 is an advanced 7, 13, 70-billion-parameter Thai language chat model based on LLaMA v2 released on April 8, 2024. It has been specifically fine-tuned for Thai instructions and enhanced by incorporating over 10,000 of the most commonly used Thai words into the large language model's (LLM) dictionary, significantly boosting its response speed.
Leading-edge Thai language LLM, setting new benchmarks by achieving the highest average scores across several Thai language exams when compared to all other open-source Thai LLMs.
The First 70b Thai opensource LLM, achieving the higher Thai exams than OpenAI GPT 3.5, Google Gemini, and Claude 3 Haiku.
Support for extended conversations across multiple turns.
Support the use case of Retrieval Augmented Generation (RAG) for enriched response generation.
Generation speeds increased by tenfold, thanks to the addition of 10,000 frequently used Thai words to the model's dictionary.
Pretrained upon a foundation of more than 65 billion Thai language words and meticulously fine-tuned with over 1 million Thai instruction examples.
Capable of understanding and processing input contexts of up to 4096 Thai words, allowing for detailed and complex instructions.
7b - https://huggingface.co/openthaigpt/openthaigpt-1.0.0-7b-chat 7b (GGUF) - https://huggingface.co/openthaigpt/openthaigpt-1.0.0-7b-chat-gguf 13b - https://huggingface.co/openthaigpt/openthaigpt-1.0.0-13b-chat 70b - https://huggingface.co/openthaigpt/openthaigpt-1.0.0-70b-chat
https://colab.research.google.com/drive/1w1giDWhmq3WIUCK4AISFJtGIqiPDtRSC?usp=sharing
** Please take a look at OTG 7b, 13b and 70b (April 2024)
for this model's evaluation result.
Exams
OTG 7b (Aug 2023)
OTG 13b (Dec 2023)
OTG 7b (April 2024)
OTG 13b (April 2024)
OTG 70b (April 2024)
SeaLLM 7b v1
SeaLLM 7b v2
SeaLion 7b
WanchanGLM 7b
Sailor-7b-Chat
TyphoonGPT 7b Instruct
GPT3.5
GPT4
Gemini Pro
Gemini 1.5
Claude 3 Haiku
Claude 3 Sonnet
Claude 3 Opus
A-Level
17.50%
34.17%
25.00%
30.83%
45.83%
18.33%
34.17%
21.67%
17.50%
40.00%
37.50%
38.33%
65.83%
56.67%
55.83%
58.33%
59.17%
77.50%
TGAT
24.00%
22.00%
22.00%
36.00%
36.00%
14.00%
28.00%
24.00%
16.00%
34.00%
30.00%
28.00%
44.00%
22.00%
28.00%
36.00%
34.00%
46.00%
TPAT1
22.50%
47.50%
42.50%
27.50%
62.50%
22.50%
27.50%
22.50%
17.50%
40.00%
47.50%
45.00%
52.50%
52.50%
50.00%
52.50%
50.00%
62.50%
thai_investment_consultant_exams
8.00%
28.00%
76.00%
84.00%
68.00%
16.00%
28.00%
24.00%
16.00%
24.00%
32.00%
40.00%
64.00%
52.00%
32.00%
44.00%
64.00%
72.00%
facebook_beleble_tha_200
25.00%
45.00%
34.50%
39.50%
70.00%
13.50%
51.00%
27.00%
24.50%
63.00%
51.50%
50.00%
72.50%
65.00%
74.00%
63.50%
77.00%
90.00%
xcopa_th_200
45.00%
56.50%
49.50%
51.50%
74.50%
26.50%
47.00%
51.50%
48.50%
68.50%
65.00%
64.00%
82.00%
68.00%
74.00%
64.00%
80.00%
86.00%
xnli2.0_th_200
33.50%
34.50%
39.50%
31.00%
47.00%
21.00%
43.00%
37.50%
33.50%
16.00%
20.00%
50.00%
69.00%
53.00%
54.50%
50.00%
68.00%
68.50%
ONET M3
17.85%
38.86%
34.11%
39.36%
56.15%
15.58%
23.92%
21.79%
19.56%
21.37%
28.03%
37.91%
49.97%
55.99%
57.41%
52.73%
40.60%
63.87%
ONET M6
21.14%
28.87%
22.53%
23.32%
42.85%
15.09%
19.48%
16.96%
20.67%
28.64%
27.46%
34.44%
46.29%
45.53%
50.23%
34.79%
38.49%
48.56%
AVERAGE SCORE
23.83%
37.27%
38.40%
40.33%
55.87%
18.06%
33.56%
27.44%
23.75%
37.28%
37.67%
43.07%
60.68%
52.30%
52.89%
50.65%
56.81%
68.32%
Thai language multiple choice exams, Test on unseen test sets, Zero-shot learning. Benchmark source code and exams information: https://github.com/OpenThaiGPT/openthaigpt_eval
(Updated on: 7 April 2024)
Source Code: License Apache Software License 2.0. Weight: Research and Commercial uses.
Official website: https://openthaigpt.aieat.or.th
Facebook page: https://web.facebook.com/groups/openthaigpt
A Discord server for discussion and support here
E-mail: kobkrit@aieat.or.th
Prompt format is based on Llama2 with a small modification (Adding "###" to specify the context part)
Single Turn Conversation Example
Single Turn Conversation with Context (RAG) Example
Multi Turn Conversation Example
First turn
Second turn
Third turn
Fourth turn
Multi Turn Conversation with Context (RAG) Example
Install VLLM (https://github.com/vllm-project/vllm)
Run server
Run inference (CURL example)
Build and Install LlamaCPP (LLAMA_CUBLAS=1 is for GPU inference)
Run server
Run inference (CURL example)
Number of Parameters
FP 16 bits
8 bits (Quantized)
4 bits (Quantized)
Example Graphic Card for 4 bits
7b
24 GB
12 GB
6 GB
Nvidia RTX 4060 8GB
13b
48 GB
24 GB
12 GB
Nvidia RTX 4070 16GB
70b
192 GB
96 GB
48 GB
Nvidia RTX 4090 24GB x 2 cards
Kobkrit Viriyayudhakorn (kobkrit@aieat.or.th)
Sumeth Yuenyong (sumeth.yue@mahidol.edu)
Thaweewat Rugsujarit (thaweewr@scg.com)
Jillaphat Jaroenkantasima (autsadang41@gmail.com)
Norapat Buppodom (new@norapat.com)
Koravich Sangkaew (kwankoravich@gmail.com)
Peerawat Rojratchadakorn (peerawat.roj@gmail.com)
Surapon Nonesung (nonesungsurapon@gmail.com)
Chanon Utupon (chanon.utupon@gmail.com)
Sadhis Wongprayoon (sadhis.tae@gmail.com)
Nucharee Thongthungwong (nuchhub@hotmail.com)
Chawakorn Phiantham (mondcha1507@gmail.com)
Patteera Triamamornwooth (patt.patteera@gmail.com)
Nattarika Juntarapaoraya (natt.juntara@gmail.com)
Kriangkrai Saetan (kraitan.ss21@gmail.com)
Pitikorn Khlaisamniang (pitikorn32@gmail.com)
Disclaimer: Provided responses are not guaranteed.